

HIE-ISOLDE 2005-2011

Mats Lindroos

- In progress: Move into extension
 - Memo 1 March to all groups
- REX Linac energy upgrade
- REX low energy stage upgrade
- Target and target handling for 900 ms PSB cycling and linac 4
- Resonant Ionization Laser Ion Source, on-line and off-line
- Other activities
- REX staff
- Summary

- Up-grade of ISOLDE facility technical objectives
 - To benefit from injector upgrades as CERN
 - 900 ms cycling of PSB
 - Linac 4: fission fragments at 160 MeV/u?
 - To increase the energy and intensity of REX-ISOLDE
 - TRAP/EBIS upgrades and possible ECR source in parallel
 - First stage to 5.5 MeV/u
 - Second stage to 10 MeV/u
 - To improve the beam quality at ISOLDE
 - Controlled time structure, smaller transverse emittance and lower energy spread
 - High charge state beams for more Users

European Roadmap for RIB facilities

Peter Butler

In progress: Power and vacuum need

		Presen	t linac		
	# units	kW	total kW	l/min	total I/min
Vacuum					
turbo	13	0.500	6.5	0.0	0.0
roughing pump	2	0.950	1.9	0.0	0.0
cryo	4	1.800	7.2	5.0	20.0
			15.6		20.0
Electrostatic elem	onte				
	32	0.007	0.2	0.0	0.0
	52	0.007	0.2	0.0	0.0
Magnetic quads					
Danphysiks	22	6.000	132.0	5.0	110.0
MQ	26			1.6	41.6
Magnetic dinole					
MD1	1			0.9	0.9
MD3	1			13.0	13.0
Bouhnik	1	2 800	28	7.0	7.0
Bruker	1	28 000	28.0	15.0	15.0
			163.0		187.5
		05.000	475.0	0.0	
Bertronix 100MHz	5	35.000	175.0	0.0	0.0
Bertronix 2001VIHz	1	35.000	35.0	?	0.0
Buncher supply	1	5.000	5.0	0.0	0.0
			215.0		0.0
Cavites RF					
					l/min for dT=15K
RFQ	1				10.0
Buncher	1				0.0
IH	1				10.0
7G1	1				10.0
7G2	1				10.0
7G3	1				10.0
9G	1				10.0
	1		379.8		252 5

		Mini-mov	/e		
	# units	kW	total kW	l/min	total l/min
Vacuum					
turbo	8	0.500	4.0	0.0	0.0
roughing pump	1	0.950	1.0	0.0	0.0
cryo	0	1.800	0.0	5.0	0.0
			5.0		0.0
Electrostatic elem	ents				
HV	0	0.007	0.0	0.0	0.0
Magnetic quads					
MQ supplies	10	6.000	60.0	5.0	50.0
MQ	10			1.6	16.0
Magnetic dipole					
GSI bender	2			9.5	19.0
GSI bender supply	2	25.000	50.0	10.0	20.0
			110.0		105.0
			115.0		105.0

Present:	400kW	250l/min
Minimove:	+120kW	+100l/min
New hall total	+200kW	+220l/min

	number	aprox price CHF	aprox total price CHF		
Dipole 485A/60V GSI	2				
Delta/Cern 30V/300A	A voir pour	les performances	demandés (stabilité, pre	ecision)	
Alimentation Delta 30/100	7	3500	24500		
Control S7/300A C300008	1	4000	4000		
Regul 300A C20942	2	4000	8000		
Commande mise en // C20939	2	4000	8000		
Distribution AC C20840A	2	3000	6000		
rack 19"	2	1000	2000		
cablage/installation rack	2	3000	6000		
raccordement AC et DC	2	?	?		
raccordement interlock	2	?	?		
				subtotal approx	58500
Quadruplet GSI + triplet	7				
Danfysik 858 15V/200A	8	12400	99200		
rack 19" equipé	3	5800	17400		
cablage/installation alim	2	3000	6000		
raccordement sur circuit eau demi	7	?	?		
raccordement AC et DC	7	?	?		
raccordement interlock	7	?	?		
				subtotal approx	122600
Singlet	2				
Delta/Cern xxV/xxA					
Alimentation Delta 30/100	2	?	?		
Control S7/300A C300008	1	4000	4000		
cablage/installation rack	1	1500	1500		
raccordement AC et DC	2	?	?		
raccordement interlock	2	?	?		
				subtotal approx	5500
				IOIAL	186600

In progress: Estimated cost for move

ltem	Cost (kchf)	Comments
Cooling	10	Guess
Electricity	240	120 distribution rack, 120 cables
Vacuum	175	8 turbos in two sections with valves and control
Power supplies	186	
Alignment		
Beam observation	20	
Drawings+fabricatio	100	35 tubes, 30 supports, 10 follow-up, 25 drawings
Installation (MP)	75	2 FSU for six months (all installation)
Quads	25	3 missing quads
Total	831	

ID		Task Name	Duration	Start	Finish		0000												0007		
	<u> </u>						2006			1				1			1		2007		
	0					Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar
1		Memo for MINI-MOVE	30 days	Tue 1/24/06	Mon 3/6/06																
2		Alignment existing REX	25 days	Tue 1/24/06	Mon 2/27/06				h.												
3		Alignment new hall	20 days	Tue 2/28/06	Mon 3/27/06	1			Ľ.												
4	H	Order power supplies	20 days	Mon 3/6/06	Fri 3/31/06	1															
5	II	Order vacuum equipment	20 days	Mon 3/6/06	Fri 3/31/06	1															
6		Design, drawings and follow-up	110 days	Mon 2/27/06	Fri 7/28/06	1															
7		Manufacturing starts	90 days	Mon 6/5/06	Fri 10/6/06	1															
8	H	Electrical services	60 days	Mon 5/15/06	Fri 8/4/06																
9		Cooling water services	60 days	Mon 5/15/06	Fri 8/4/06]															
10		Installation new linac elements	90 days	Mon 6/26/06	Fri 10/27/06																
11		Installation power supplies	155 days	Mon 6/26/06	Fri 1/26/07																
12		Vacuum controls	155 days	Mon 6/26/06	Fri 1/26/07	1															
13		Installation vacuum	85 days	Mon 10/2/06	Fri 1/26/07	1															
14		Move existing bending magnet	5 days	Mon 10/30/06	Fri 11/3/06																
15		Move miniball	100 days	Mon 10/30/06	Fri 3/16/07																
16		Finalize installation	35 days	Mon 1/29/07	Fri 3/16/07																

Proposed by IHEP:

"An REQ DTL Section driven at H-mode of RF Oscillations. Transverse Focusing period $2\beta\lambda$, Pattern FFDD. Effective acc. Voltage around 4 MV/m. Aperture Hole Diameter 10 mm. Normalized transverse Acceptance $3-4\pi$ mm mrad".

 \Rightarrow 5.5 - 10 MeV/u: Two 3.5 m Tanks, rf-Power: 500 kW/Tank

What is a superconducting linac?

- Basically it's an array of small independent resonating cavities, equipped with their own small power amplifier.
- Since these small cavities have a wide velocity acceptance they can accelerate very efficiently a large variety of ions with different A/q ratio
- They provide very high field at c.w. operation with little power consumption.

Low energy SC cavities (0.01<β<0.1) at low frequency (80<f<350 MHz)

Legnaro "Reentrant"

Legnaro "SC RFQ"

M. Pasini

State-of-the-art SC cavities used for radioactive heavy ions accelerators

 $E_{acc}T = 6MV/m$ over a length of 24 cm

= 1.44 MV @ 7W power dissipation on LHe.

Courtesy of B. Laxdal, TRIUMF

M. Pasini

Some reason to go SC... 1/2

- Higher flexibility and higher beam quality achievable with respect to NC.
- Conventional beam dynamics (assures constant longitudinal emittance).
- Possibility of having large aperture \rightarrow very high transmission.
- Effective voltage always available, so lighter ions can be accelerated to higher energy.

Some reason to go SC... 2/2

- The CW operation open the door to future upgrade of the charge breeder to high duty cycle → more beam for the experiments.
- Really modular scheme and adapted for series production \rightarrow hence cheaper in view of the big up-grade.
- Possibility of several integration with CERN infrastructure such as chemical polishing, clean room, cryogenic plant.
- In the last years, SC linac demonstrated a reliability higher then 90% and all the new planned facilities foreseenSC post-accelerator (FURISOL)

Back of the envelopes calculation

- Energy upgrade from 1.2 to 5.5 MeV/u for a A/q=4.5 means an effective voltage of 19.4 MV
- Assuming 1 MV per cavity (conservative value) 20 cavities are needed.
- Cryostats 2 meters long can contain 4-5 cavities, (it depends from the focusing scheme) so the 5.5 MeV/u can be reached in 10m.

An attempt of cost estimate - <u>to be</u> <u>verified</u>

SC LINAC MEDIUM β	CAVITIES	1160000
	CRYOSTATS	1025000
	PROTOTYPE	100000
	QUADRUPOLES	340000
	VACUUM	200000
	AMPLIFIERS	200000
	CONTROLS	150000
	RF CONTROLS	100000
	DLAGNOSTICS	100000
	SERVICES	125000
	SAFETY	100000

3600000 CDN

This was a cost estimation for 20 cavities, 5 cryostat and a prototype for the ISAC-II linac. Recent result show that the cost of the cavity can be reduced by using sputtered Nb on copper cavity.

- Internal review of beam-line layout for the move of mini-ball into the extension in March 2006
- Proposal to be prepared for IH and superconducting technology for 15 April
 - Budget for staff that will work on this?
 - Time limit?
- External review of linac technology proposals in last week of May
 - TRIUMF, GSI, Orsay specialists

REXTRAP

Fig.1 Schematic layout of the n-converter/target configuration Mats Lindroos

Target handling and safety (10 microAmps)

- New RILIS pump lasers
 - Solid state laser to replace CV lasers without degrading performance
 - Installation in shutdown 2006-2008
 - Replacing dye lasers with Ti:saphire lasers or other solidstate lasers
 - LIST for ISOLDE
- Off-line lab for new developments and atomic spectroscopy research
 - Under installation
- External grants
 - 2.4 MCHF from Wallenberg in Sweden
 - BMBF application submitted for LIST

Beam quality: New HRS and RFQ cooler

- "Isobaric" separation
- Separation limited by the beams transverse size
- Cooling at low energy with RFQ cooler

- Technical Services
 - Second transformer for ISOLDE to assure noninterrupted operation during maintenance of transformers
 - Ventilation for extension
 - Cooling for REX upgrades and new experiments
- Vacuum group
 - Replacement of vacuum controls with new standard control units
 - Increase recovery tank capacity and connect RFQ cooler, REX trap and EBIS (ECR?)

WP No	Task name	Cost	
		Material (kCHF)	Staff (FTE)
1	REX upgrade >10 MeV/u	7750	17.1
2	REX low energy stage upgrade	1175	2.4
3	RFQ cooler	495	1.8
4	High charge state beam line	800	1.2
5	New HRS	1500	1.9
6	Targetry for linac 4 proton beam	3300	10.5
7	RILIS upgrade	2630	2.6
8	TS infrastructure improvements	1100	1.8
9	AT/VAC consolidations	1500	1.8
10	ISOLDE physics group	1000	6
	Total:	21250	47.1

Total material cost (kCHF):	21250								
Total external (kCHF):	7055								
Total CERN (kCHF):	14195								
Year:		2004	2005	2006	2007	2008	2009	2010	2011
Annual external:		255	580	2000	1200	1600	820	300	300
Annual CERN:		0	20	525	2300	3100	3350	2750	2150
Annual totals:		255	600	2525	3500	4700	4170	3050	2450

Total personyear:	47.1								
Year:		2004	2005	2006	2007	2008	2009	2010	2011
Annual staff in personyear:		0.9	2.1	3.8	8	9.3	8.8	7.1	7.1

External contributors	Material (kCHF)	Comment
ISOLDE collaboration	200	0
IKS Leuven, BE	85	0 Approved
IKS Leuven, BE	100	0 Application being prepared
EPSCR, UK	25	5 Approved
VR, SE	240	0 Approved
BMBF, D	35	0 Design study already approved
Total	685	5

Associated approved prc Material (kCHF)	Staff (FTE)
EURISOL DS Targets 100	7
EURISOL DS Safety	2
EURISOL DS Beampreparation	3
EURONS chargebreeding	1
EURONS mass separators	1
Total 100	14

	1			∠004	I	2005		2006		2007		2008		2009	20)10	2011		2012		2013	2014
			Qtr 3	Qtr 1	Qtr 3	Qtr 1	Qtr 3	Qtr 1	1 Qtr 3	Qtr 1	Qtr 3	Qtr 1	Qtr 3	Qtr 1 Qtr	3 C	Qtr 1 Qtr 3	Qtr 1	Qtr 3	Qtr 1	Qtr 3	Qtr 1 Qtr 3	Qtr 1 Qtr 3
1	LINAC upgrade	Mon 4/2/12							4										\sim			
2	Review of linac technology	Fri 4/28/06							4/28													
3	Decision RB	Thu 6/8/06							6/8													
4	REX-linac 4.2 MeV/u	Mon 3/31/08										3/3	1									
5	REX-linac 5.5 MeV/u	Mon 3/30/09												3/30								
6	REX-linac 10 MeV/u	Mon 4/2/12																	<u> </u>	4/2		
7	REX low energy stage upgrade	Mon 3/29/10							\checkmark							\checkmark						
8	Decision RB	Thu 6/8/06							6/8													
9	Tests of Phoenix set-up completed	Fri 9/28/07									9	/28										
10	Review of chargebreeding technology	Fri 12/14/07									$\langle \rangle$	12/14										
11	REX low energy stage upgraded	Mon 3/29/10														3/29						
12	RFQ cooler	Mon 4/2/07							\sim													
13	Decision by RB	Thu 6/8/06							6/8													
14	Commisioning completed	Fri 10/27/06							\bigcirc	10/27												
15	First beam into central beam-line	Mon 4/2/07								4	/2											
16 I	High charge beamline	Mon 3/31/08							\sim													
17	Decision by RB	Thu 6/8/06							6/8													
18	First beam to central beam-line	Mon 3/31/08										3/3	1									
19 I	New HRS	Mon 3/29/10							\sim							\sim						
20	Decision by RB	Thu 6/8/06							6/8													
21	Prototype magnet delivered	Fri 11/3/06							\diamond	11/3												
22	Prototype verified	Fri 2/1/08										2/1										
23	Decision by ABM on final design	Mon 3/31/08										3/3	1									
24	New HRS operational	Mon 3/29/10														3/29						
25	Targetry for linac 4	Mon 1/30/12							\sim										\sim			
26	Decision by RB	Thu 6/8/06							6/8													
27	FLUKA simulations completed	Fri 12/15/06							< C	12/15												
28	Decision by ABMB on lay-out	Mon 2/4/08										2/4										
29	New target area operational	Mon 1/30/12																	1/3	0		
30 I	RILIS upgrade	Mon 3/31/08																				
31	Grant received from KWF	Fri 1/20/06						1/2	20													
32	Replacement for CV lasers operational	Mon 4/2/07								4	/2											
33	LARIS operational	Mon 4/2/07								4	/2											
34	Replacement of Dye-lasers operational	Mon 3/31/08										3/3	1									
35	TS infrastructure	Mon 3/30/09																				
36	New eletricity distribution system operation	Mon 4/3/06							4/3													
37	New transformer operational	Mon 3/31/08										3/3	1									
38	New cooling water stage operational	Mon 3/31/08										3/3	1									
39	New ventilation system operational	Mon 3/30/09												3/30								
40	AT/VAC consolidation	Mon 4/2/12																				
41	All roughing pumps moved from hall	Mon 4/2/07								● 4	/2											
42	Vaccum consolidation	Mon 4/2/12																	0	4/2		

- Presentation for group leaders of HIE-ISOLDE project, 10/2
- Individual discussions with group representatives, >28/2
- Approval by ABMB of staff allocation for REX upgrade technology study, 20/2
- REX upgrade technology study (2 months)
- 1st General Project preparation meeting in March, 13/3
- Consultation with groups
- 2nd General project preparation meeting in April, 10/4
- Consultation with groups
- REX external review panel meeting, 1st week of May
- Finalize proposal
- Presentation of project proposal to ABMB

Fredrik Wenander - 01.12.2003-30.11.2006, E
 Lee Neville - 01.02.2004-31.01.2007, C
 Nicolas David - 01.03.2004-28.02.2007, C
 Nikolai Trofimov - 01.10.2004-30.09.2006, E
 Didier Voulot - 01.08.2005-31.08.2006, Fellow

#) Thomas Sieber - 16.11.2003 - 31.08.2005, E

Is it early enough to know about these posts in June?

100kW direct production 5 MW spallation n target → 100 MeV/u RIB

- The HIE-ISOLDE project proposal will be presented for Research Board 8 June 2005
 - External review of linac technology in first week of May 2006
 - Presentation for ABMB 15 May
 - Need of staff to work on the two proposals for the external review
- Questions for you:
 - Who is my partner in each group to check and refine the figures for each WP?
 - When do we need a decision on the REX staff?